
prunito Documentation

kp14

Feb 15, 2020

Contents:

1 Installing prunito 3

2 Dependencies 5

3 Quick start 7

4 Dealing with results from web services 13
4.1 What does WSResponse (sub)classes do? . 13
4.2 Results from searching UniProtKB . 13
4.3 Results from identifiers mappings . 14
4.4 Results from HMMER searches . 14
4.5 Results from searching EuropePMC . 14
4.6 Taxonomy results . 14

5 UniProt REST services 15
5.1 UniProt vs. Proteins API . 15
5.2 Searching UniProtKB . 16
5.3 Looking at results . 16
5.4 Mapping identifiers . 17
5.5 Converting between different UniProt formats . 17
5.6 Retrieving batches of entries . 17
5.7 Retrieving taxonomy data . 17

6 Parsers for UniProt data 19
6.1 UniProtKB text parser . 19

7 API for uniprot.org 21

8 UniProt Proteins API 23

9 Utilities used in the package 25

10 Indices and tables 27

i

ii

prunito Documentation

A package providing tools for accessing and working with protein sequences and associated data. The focus is on data
from the UniProtKB. This is reflected in the package name which is an anagram of UniProt. UniProt has two sets of
REST services, uniprot.org and the newer Proteins API. Additionally, a few tools for accessing services or working
with data from the following resources are provided:

• EuropePMC

• InterPro

• ENA

• EBI web services

Contents: 1

https://www.uniprot.org
https://www.uniprot.org
https://www.ebi.ac.uk/proteins/api
https://europepmc.org/
https://www.ebi.ac.uk/interpro/
https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/seqdb/confluence/display/JDSAT/Job+Dispatcher+Sequence+Analysis+Tools+Home

prunito Documentation

2 Contents:

CHAPTER 1

Installing prunito

Prunito is packaged as a wheel and can be installed using pip. This will also install all the (mandatory) dependencies.
Python >=3.6 is required. As usual, it probably best to install prunito and its dependencies into a dedicated virtual
environment.

1. Create a virtual environment

Using conda from the Anaconda Python distribution :

• Create a new environment (e.g. called myenv) which runs Python 3.6 and has pip installed:

conda create -n myenv python=3.6 pip

• Activate the env:

conda activate myenv

Using venv in a regular Python installation. Python is usually available out of the box on Linux:

• Ensure that the version of Python used is 3.6 or higher:

python --version

• Create a new environment (e.g. called myenv). ensurepip will bootstrap pip into the env:

pyvenv /path/to/new/virtual/environment/myenv

2. Install prunito with its dependencies:

pip install prunito-<version-py3-none-any>.whl

3

https://pip.pypa.io/en/stable/
https://www.continuum.io/downloads

prunito Documentation

4 Chapter 1. Installing prunito

CHAPTER 2

Dependencies

All of the following packages have to be installed some of which come with their own dependencies but those should
be taken care of by running the usual pip command:

• requests

• lxml

• pandas (optional)

• venndy (optional)

5

http://docs.python-requests.org/en/master/
http://lxml.de/
https://pandas.pydata.org/
https://github.com/kp14/venndy

prunito Documentation

6 Chapter 2. Dependencies

CHAPTER 3

Quick start

First, import the relevant package:

from prunito import uniprot as up

A simple search for all reviewed UniProtKB entries with tax in their names.

result = up.search_reviewed('name:tax')

Check how many hits this search retrieved. As results are sequence-like, they support __len__.

result.size()
or
#len(result)

What would happen if a given query had many hits? By default, the maximum number of hits retrieved is 2000. This
can be changed using the parameter limit.

Let’s re-run the previous search but this time not just for reviewed entries but all of UniProtKB:

huge = up.search('name:tax', limit=1000)

Partial dataset retrieved. Size: 1890. Retrieved: 1000.
Consider increasing the limit and/or using offset.

If the set limit is lower than the actual number of search hits, the above hint is printed. One could then set
limit=2000.

Back to the initial result. What does size mean? UniProtKB entries. And these entries we would like to parse. As
prunito provides functionality for both searching and parsing UniProt, one can directly iterate over the entries in a
search result for convenience:

entries = list(result)
or
for entry in result: ...

7

prunito Documentation

Iterate over the entries, printing out primary accessions and recommended full names. Both fields are provided for
convenience.

for entry in entries:
print(entry.primary_accession, entry.recommended_full_name)

Q06507 Cyclic AMP-dependent transcription factor ATF-4
P18848 Cyclic AMP-dependent transcription factor ATF-4
Q9Y6D9 Mitotic spindle assembly checkpoint protein MAD1
P47911 60S ribosomal protein L6
P10070 Zinc finger protein GLI2
Q0VGT2 Zinc finger protein GLI2
...

Which methods and fields are available on a Record object? Basically, all the ones Biopython’s REcord objects pro-
vide plus as few more for convenience. See prunito.uniprot.parsers.parser_knowledgebase_txt.
Record.

Get isoforms for those entries that have them. We use the presence of a keyword, Alternative splicing, as a filter here.

for e in entries:
if 'Alternative splicing' in e.keywords:

for i in e.isoforms():
print(i)

>sp|Q9Y6D9-2|MD1L1_HUMAN Isoform 2 of Mitotic spindle assembly checkpoint protein
→˓MAD1 OS=Homo sapiens (Human). OX=['9606']
MLPARGCVRKRTVWPRLARVLIVTLLTLELSYAPLPCQLSGVPYNTGDPVGRWARPCIWP
CPWHTTINALKGRISELQWSVMDQEMRVKRLESEKQELQEQLDLQHKKCQEANQKIQELQ
...
>sp|P10070-1|GLI2_HUMAN Isoform 1 of Zinc finger protein GLI2 OS=Homo sapiens (Human).
→˓ OX=['9606']
MALTSINATPTQLSSSSNCLSDTNQNKQSSESAVSSTVNPVAIHKRSKVKTEPEGLRPAS
PLALTQGQVSGHGSCGCALPLSQEQLADLKEDLDRDDCKQEAEVVIYETNCHWEDCTKEY
...
>sp|P10070-2|GLI2_HUMAN Isoform 2 of Zinc finger protein GLI2 OS=Homo sapiens (Human).
→˓ OX=['9606']
MALTSINATPTQLSSSSNCLSDTNQNKQSSESAVSSTVNPVAIHKRSKVKTEPEGLRPAS
PLALTQEQLADLKEDLDRDDCKQEAEVVIYETNCHWEDCTKEYDTQEQLVHHINNEHIHG
...

We would like to run a FASTA similarity search against Swiss-Prot for one of the sequences. Let’s take the canonical
sequence of the first entry in entries.

Here we use the ebiwebservices module from prunito. The EBI web services require an email address to be
set.

from prunito import ebiwebservices as ews

ews.set_email('some@gmx.de')

first_entry = entries[0]
similar = ews.fasta_search(first_entry.as_fasta())

print(similar.text[:600])

8 Chapter 3. Quick start

prunito Documentation

/nfs/public/release/wp-jdispatcher/latest/appbin/linux-x86_64/fasta-36.3.7b/fasta36
→˓-l /nfs/public/ro/es/data/idata/latest/fastacfg/fasta3db -L -T 8 -p -m "F9 fasta-
→˓R20180501-155642-0060-16766253-p1m.m9" @:1- +uniprotkb_swissprot+
FASTA searches a protein or DNA sequence data bank
version 36.3.7b Jun, 2015(preload9)

Please cite:
W.R. Pearson & D.J. Lipman PNAS (1988) 85:2444-2448

Query: @
1>>>sp|Q06507|ATF4_MOUSE Cyclic AMP-dependent transcription factor ATF-4 OS=Mus

→˓musculus (Mouse). OX=['10090'] - 349 aa
Library: UniProtKB/Swiss-Prot

199856860 residues in 557275 sequences

Statistic...

How about using InterPro’s HMMER search instead of FASTA?

from prunito import interpro as ip

ip_similar = ip.search_phmmer(first_entry.as_fasta())
print(ip_similar.summary())

acc2 acc desc species kg evalue
Q06507 ATF4_MOUSE Cyclic AMP-dependent transcription factor ATF-4 Mus
→˓musculus Eukaryota 1.0e-232
Q9ES19 ATF4_RAT Cyclic AMP-dependent transcription factor ATF-4 Rattus
→˓norvegicus Eukaryota 2.6e-216
P18848 ATF4_HUMAN Cyclic AMP-dependent transcription factor ATF-4 Homo
→˓sapiens Eukaryota 2.4e-195
Q3ZCH6 ATF4_BOVIN Cyclic AMP-dependent transcription factor ATF-4 Bos
→˓taurus Eukaryota 1.9e-169
Q6NW59 ATF4_DANRE Cyclic AMP-dependent transcription factor ATF-4 Danio
→˓rerio Eukaryota 5.0e-34
Q9Y2D1 ATF5_HUMAN Cyclic AMP-dependent transcription factor ATF-5 Homo
→˓sapiens Eukaryota 6.3e-20
Q6P788 ATF5_RAT Cyclic AMP-dependent transcription factor ATF-5 Rattus
→˓norvegicus Eukaryota 5.8e-18
Q9GPH3 ATFC_BOMMO Activating transcription factor of chaperone Bombyx
→˓mori Eukaryota 2.4e-16
O70191 ATF5_MOUSE Cyclic AMP-dependent transcription factor ATF-5 Mus
→˓musculus Eukaryota 3.5e-13
Q8TFF3 HAC1_HYPJE Transcriptional activator hac1 Hypocrea jecorina (strain
→˓QM6a) Eukaryota 5.4e-05

The result summary is also available as a dataframe if pandas is.

df_hmmer = ip_similar.as_dataframe()

Do some of the entries contain the same PubMed IDs? Let’s find the 5 most common ones.

from collections import Counter

c = Counter()
for e in entries:

c.update(e.all_pubmed_ids)
print(c.most_common(5))

9

prunito Documentation

[('15489334', 24), ('20068231', 9), ('14702039', 8), ('23186163', 8), ('21269460', 7)]

Which are the accession numbers and species of those 24 entries containing the most common one (15489334)?

for e in entries:
if '15489334' in e.all_pubmed_ids:

print(e.primary_accession, e.organism)

Q06507 Mus musculus (Mouse).
P18848 Homo sapiens (Human).
Q9Y6D9 Homo sapiens (Human).
P47911 Mus musculus (Mouse).
Q0VGT2 Mus musculus (Mouse).
...

So, which paper is hiding behind this PMID 15489334? Here we use another module for accessing EuropePMC
<https://europepmc.org> from prunito. EuropePMC returns data for example in JSON format. We can iterate over
the results.

from prunito import europepmc as epmc

paper = epmc.get_pmid_metadata('15489334')
for p in paper:

print(p['title'])
print(p['abstractText'])

The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian
→˓Gene Collection (MGC).

"The National Institutes of Health's Mammalian Gene Collection (MGC) project was
→˓designed to generate and
sequence a publicly accessible cDNA resource containing a complete open reading frame
→˓(ORF) for every human
and mouse gene. The project initially used a random strategy to select clones from a
→˓large number of cDNA
libraries from diverse tissues. Candidate clones were chosen based on 5'-EST
→˓sequences, and then fully sequenced
to high accuracy and analyzed by algorithms developed for this project. Currently,
→˓more than 11,000 human and
10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The
→˓random selection approach
is now reaching a saturation point, and a transition to protocols targeted at the
→˓missing transcripts is now
required to complete the mouse and human collections. Comparison of the sequence of
→˓the MGC clones to reference
genome sequences reveals that most cDNA clones are of very high sequence quality,
→˓although it is likely that some
cDNAs may carry missense variants as a consequence of experimental artifact, such as
→˓PCR, cloning, or reverse
transcriptase errors. Recently, a rat cDNA component was added to the project, and
→˓ongoing frog (Xenopus) and
zebrafish (Danio) cDNA projects were expanded to take advantage of the high-
→˓throughput MGC pipeline."

The paper mentions the Mammalian Gene Collection. Why not search EuropePMC for articles mentioning the collec-
tion in their abstracts?

10 Chapter 3. Quick start

prunito Documentation

mgc_papers = epmc.search('abstract:"Mammalian Gene Collection"')
mgc_papers.size()
#
len(mgc_papers)
for idx, hit in enumerate(mgc_papers):

print(idx, hit['title'])

0 Identification of candidate transcription factor binding sites in the cattle genome.
1 Selenoproteins in bladder cancer.
2 NSrp70 is a novel nuclear speckle-related protein that modulates alternative pre-
→˓mRNA splicing in vivo.
3 Generation of a genome scale lentiviral vector library for EF1Î± promoter-driven
→˓expression of human ORFs ...
4 The completion of the Mammalian Gene Collection (MGC).
5 A high-throughput platform for lentiviral overexpression screening of the human
→˓ORFeome.
6 PRFdb: a database of computationally predicted eukaryotic programmed -1 ribosomal
→˓frameshift signals.
7 Transcriptome analysis of a cDNA library from adult human epididymis.
...

Each hit/paper has many extra data fields including DOI, PubMed ID etc. If the abstract is needed,
resulttype='core' has to be specified as a search parameter.

for k, v in list(mgc_papers)[3].items():
print(k + ':\t' + str(v))

id: 23251614
source: MED
pmid: 23251614
pmcid: PMC3520899
doi: 10.1371/journal.pone.0051733
title: Generation of a genome scale lentiviral vector library for EF1Î± promoter-
→˓driven expression of human ORFs and identification of human genes affecting viral
→˓titer.
authorString: Å kalamera D, Dahmer M, Purdon AS, Wilson BM, Ranall MV,
→˓Blumenthal A, Gabrielli B, Gonda TJ.
journalTitle: PLoS One
issue: 12
journalVolume: 7
pubYear: 2012
journalIssn: 1932-6203
pageInfo: e51733
pubType: research support, non-u.s. gov't; research-article; journal article;
isOpenAccess: Y
inEPMC: Y
inPMC: Y
hasPDF: Y
hasBook: N
hasSuppl: Y
citedByCount: 8
hasReferences: Y
hasTextMinedTerms: Y
hasDbCrossReferences: Y
dbCrossReferenceList: {'dbName': ['EMBL']}
hasLabsLinks: Y

(continues on next page)

11

prunito Documentation

(continued from previous page)

hasTMAccessionNumbers: Y
tmAccessionTypeList: {'accessionType': ['gen']}
firstPublicationDate: 2012-12-12

12 Chapter 3. Quick start

CHAPTER 4

Dealing with results from web services

Internally, prunito uses the wonderful requests package and that provides a sophisticated Response object. To
avoid losing the power of that object, prunito provides a wrapper around it, the WSResponse class (where WS
stands for web service). Or course, format and content of results returned by calls to web services depend on the
service and so there are custom subclasses of WSResponse for various web services.

4.1 What does WSResponse (sub)classes do?

They provide helper methods. For example, size() returns the number of hits if that particular web service gives
that information or it can be quickly determined. as_file_obejct() wraps the result’s text representation in io.
StringIO. As many results are sequences-like–we do expect one or more hits for a call after all– special methods
for sequences are provided wherever possible to allow iteration or slicing. Obviously, this depends on the service and
kind of results.

Any attribute they don’t recognize is passed on to the wrapped Response object. This means that things like the the
Response’s attributes can be accessed via as expected: text, url, status. Methods like json() are available,
too.

4.2 Results from searching UniProtKB

In addition to what the parent class has, this one also:

• Has a method, release(), for getting the current release. Releases are specified as year_number, e.g.
2017_10.

• Has a method, date(), to get the date of the current release. This can be returned as a string or a datetime.
datetime obejct.

• Allows iterating over results for some formats.

When full UniProtKB text entries are retrieved, they are parsed and the iterator returns the Record object. For
tabular data, like list, gff or tab, lines are iterated over.

13

http://docs.python-requests.org/en/master/
https://docs.python.org/3/library/io.html#io.StringIO
https://docs.python.org/3/library/io.html#io.StringIO
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

prunito Documentation

• Tabular data can also be returned as a pandas dataframe.

See also WSResponseUniprot.

4.3 Results from identifiers mappings

Results for mapping calls are returned as a table with two columns, From and To. This table can be accessed as text via
<obj>.text, the lines can be iterated over but, for convenience, a dictionary of the results is prepared as <obj>.
as_dict(). A list of mapped-to target IDs is <obj>.target_ids(). Identifiers that could not be mapped will
be silently ignored, i.e., there won’t be any mappings in the result set.

See also WSResponseUniprotMapping.

4.4 Results from HMMER searches

todo See also WSResponseHmmer.

4.5 Results from searching EuropePMC

todo See also WSResponseEPMC.

4.6 Taxonomy results

todo See also WSResponseTax.

14 Chapter 4. Dealing with results from web services

CHAPTER 5

UniProt REST services

Using UniProt REST services is about retrieving data, for example based on a query. By carefully choosing their
format, retrieved data might constitute the true end result, they might be input for another procedure (e.g. FASTA
sequences feeding into a similarity search), but often results have to processed further. This is called parsing. Another
section of the help will take a closer look at this.

5.1 UniProt vs. Proteins API

Services via UniProt allow the following:

• Searching UniProtKB

• Mapping identifiers

• Retrieving batches of entries

• Converting between different UniProt formats

The Proteins API provides access data (sets) that often go beyond what you would find in UniProtKB. Many have not
been included in prunito yet.

• Protein and isoform sequences

• Residue-specific annotations (also called features)

• Variation data

• Proteomics data

• Antigen binding sites

• Proteome data

• Retrieving taxonomy data

• Genomic coordinates

• Access to UniParc

15

https://www.uniprot.org
https://www.ebi.ac.uk/proteins/api

prunito Documentation

Common result formats for the REST services are:

• TXT, also called flat file version. The classic format. Contains the most important information. Hard to parse
though.

• TAB, tabular format. Data fields (columns) can be specified.

• GFF, for residue-specific annotations, i.e., anything that can be linked to a (range of) amino acid(s).

• XML

• LIST, just accession numbers.

• FASTA, sequences only, in FASTA format.

• JSON

Note: Note that while the classic UniProt REST API does not provide data in JSON format the Proteins API does.
On the other hand, Proteins API does not provide GFF or tabular output.

5.2 Searching UniProtKB

The UniProt website has powerful search functionality supporting both free-text and field-based queries. To get the
most concise and relevant data set, field-based queries (also called advanced search) should be used. As UniProt’s
advanced search is RESTful anyway, searching via prunito can be done using queries copied directly from the
website. This means that complicated queries can be developed and tested on the website first which might come in
handy, especially when learning. There is a help page listing all the possible fields for the advanced search.

There is really only one function for searching, search(). A query string is the only mandatory parameter. In that
case full UniProtKB entries in text (flat file) format are retrieved. The default limit is 2000 entries; this can be changed,
of course.

For convenience, methods limiting results to reviewed (i.e. Swiss-Prot) or unreviewed (i.e. TrEMBL) entries can
be used. Unsurprisingly, these are search_reviewed() and search_unreviewed(). Refer to the API for
uniprot.org docs for more information.

A few example queries:

from prunito import uniprot as up

result = up.search('name:laccase AND reviewed:yes')
or using the convenience function
result = up.search_reviewed('name:laccase')
getting sequences only
result = up.search_reviewed('name:laccase', frmt='fasta')
As laccases are enzyme, get relevant enzyme data
result = up.search_reviewed('name:laccase', frmt='tab', columns='id,entry name,
→˓comment(FUNCTION),ec')

5.3 Looking at results

The section on dealing with results explains the basics.

16 Chapter 5. UniProt REST services

https://www.ebi.ac.uk/proteins/api
https://www.uniprot.org
https://www.uniprot.org/help/advanced_search

prunito Documentation

5.4 Mapping identifiers

A paper might contain a list of identifiers for 3D protein structures. A repository for such structure is PDB and their
IDs look like 1ABC. Say we wanted to map those PDB IDs to Ensembl ones–this is what the mapping does. As
mappings always have to include UniProt accessions as either source or target, mapping from PDB to Ensembl is s
two-step process.

Map PDB -> UniProt
up_from_pdb = up.map_to_or_from_uniprot(['1YWT', '3SMN', '4F3L', '1ES7', '2KDD'],
→˓'PDB_ID', 'ACC')
Map UniProt -> Ensembl
ensembl = up.map_to_or_from_uniprot(up_from_pdb.target_ids(), 'ACC', 'ENSEMBL_ID')

From the result, the target IDs that the original set has been mapped to, are available as a list via up_from_pdb.
target_ids().

A full list of sources, targets and their abbreviations can be found here. Refer to the API for uniprot.org docs for more
information.

5.5 Converting between different UniProt formats

I don’t think this is used much. One could, for example, convert the text version of a UniProt entry into XML. The
text entry would have to be without any errors though for this to work. Refer to the API for uniprot.org docs for more
information.

5.6 Retrieving batches of entries

If one already has a list of UniProt accessions these can be retrieved using the batch functionality. Refer to the API for
uniprot.org docs for more information.

result = up.retrieve_batch(['P12345', 'P12344'], frmt='txt')

5.7 Retrieving taxonomy data

Although UniProt entries contain taxonomy data–an NCBI taxonomy ID, a species name and an abbreviated lineage–
extracting the information from, say, the text version is cumbersome. In addition, the information will be incomplete
(abbreviated lineage) and for nodes in the lineage no taxonomy IDs are given. Here, the Proteins API comes to
the rescue, allowing e.g. retrieval of information on particular nodes or entire lineages of a given taxonomy node,
including IDs. Results from Proteins API are always retreived in JSON format and taxonomy nodes can be iterated
over. Refer to the UniProt Proteins API docs for more information.

from prunito import uniprot as up

result = up.get_lineage_for_taxID('9606'):
for node in result:

print(node)

5.4. Mapping identifiers 17

https://www.uniprot.org/help/api_idmapping

prunito Documentation

{'taxonomyId': 9606, 'scientificName': 'Homo sapiens'}
{'taxonomyId': 9605, 'scientificName': 'Homo'}
{'taxonomyId': 207598, 'scientificName': 'Homininae'}
{'taxonomyId': 9604, 'scientificName': 'Hominidae'}
...

Details of a single taxonomy ID can also be retrieved:

hs = up.get_info_on_taxID('9606')
print(hs.json())

{'childrenLinks': ['https://www.ebi.ac.uk/proteins/api/taxonomy/id/741158',
'https://www.ebi.ac.uk/proteins/api/taxonomy/id/63221'],

'commonName': 'Human',
'mnemonic': 'HUMAN',
'parentLink': 'https://www.ebi.ac.uk/proteins/api/taxonomy/id/9605',
'rank': 'species',
'scientificName': 'Homo sapiens',
'siblingsLinks': ['https://www.ebi.ac.uk/proteins/api/taxonomy/id/1425170'],
'superregnum': 'E',
'taxonomyId': 9606}

If the same is needed for several IDs:

several_nodes = up.get_info_on_taxIDs(['9606', '6237', '83333'])
for node in several:

print(node['scientificName'], node['taxonomyId'], len(node['childrenLinks']))

Homo sapiens 9606 2
Caenorhabditis 6237 51
Escherichia coli (strain K12) 83333 13

18 Chapter 5. UniProt REST services

CHAPTER 6

Parsers for UniProt data

Prunito provides parsers for the text (flat file) version of UniProtKB entries and the UniRule XML format. Support
for the latter is not up-to-date.

6.1 UniProtKB text parser

19

prunito Documentation

20 Chapter 6. Parsers for UniProt data

CHAPTER 7

API for uniprot.org

21

prunito Documentation

22 Chapter 7. API for uniprot.org

CHAPTER 8

UniProt Proteins API

23

prunito Documentation

24 Chapter 8. UniProt Proteins API

CHAPTER 9

Utilities used in the package

25

prunito Documentation

26 Chapter 9. Utilities used in the package

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

27

	Installing prunito
	Dependencies
	Quick start
	Dealing with results from web services
	What does WSResponse (sub)classes do?
	Results from searching UniProtKB
	Results from identifiers mappings
	Results from HMMER searches
	Results from searching EuropePMC
	Taxonomy results

	UniProt REST services
	UniProt vs. Proteins API
	Searching UniProtKB
	Looking at results
	Mapping identifiers
	Converting between different UniProt formats
	Retrieving batches of entries
	Retrieving taxonomy data

	Parsers for UniProt data
	UniProtKB text parser

	API for uniprot.org
	UniProt Proteins API
	Utilities used in the package
	Indices and tables

